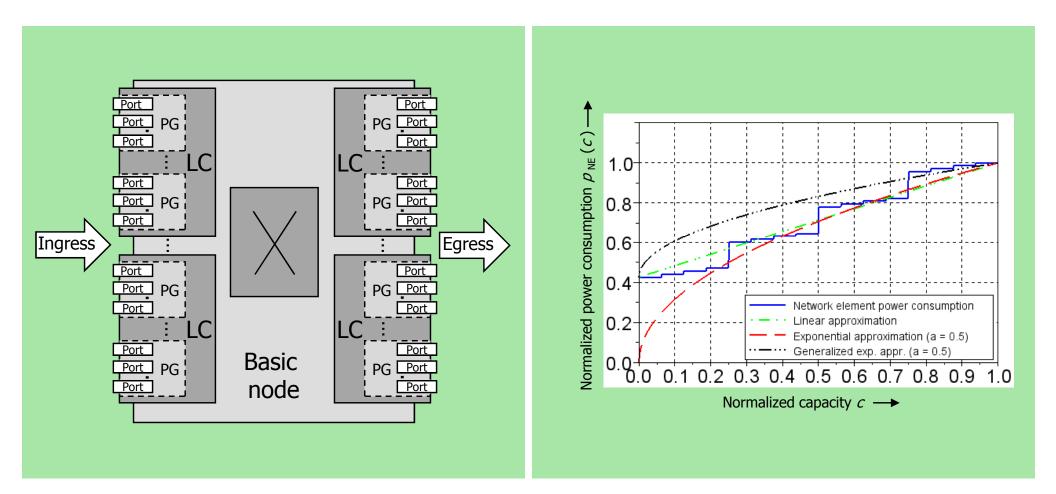


Taxonomy of Dynamic Power Saving Techniques in Fixed Broadband Networks

Ralph Schlenk⁽¹⁾, Christoph Lange⁽²⁾, Heiko Lehmann⁽²⁾, Ron Vleugel⁽¹⁾

⁽¹⁾ Alcatel-Lucent Deutschland AG, Thurn-und-Taxis-Straße 10, 90411 Nürnberg, Germany ⁽²⁾ Deutsche Telekom AG, Telekom Innovation Laboratories, Winterfeldtstraße 21, 10781 Berlin, Germany

Introduction & Motivation


Dynamic aspects of load-adaptive networking

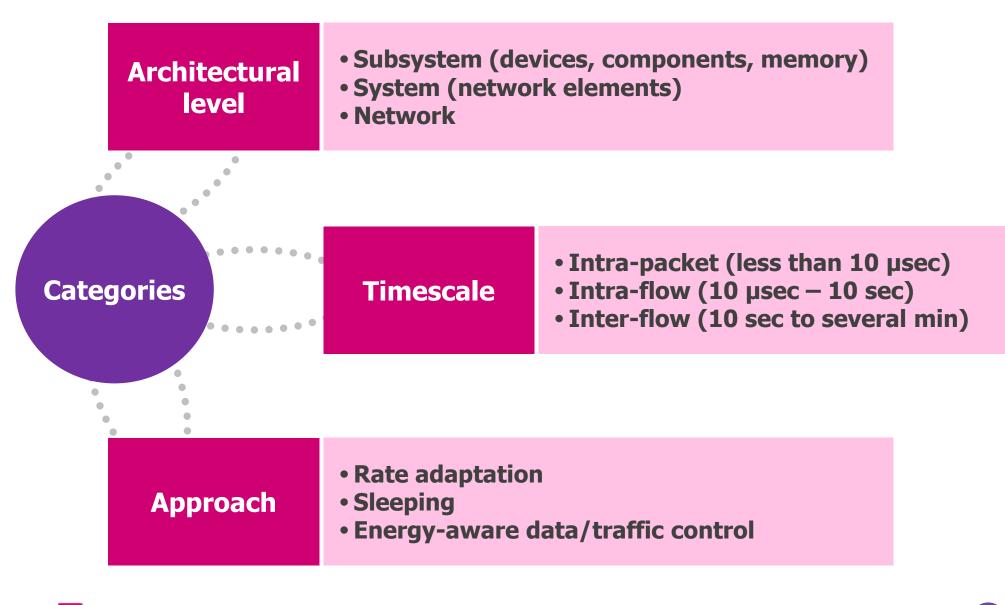
Network reconfiguration time characteristics

Measurements and results

INTRODUCTION GENERIC NETWORK ELEMENT MODEL

Lange, C.; Schlenk, R.; Lehmann, H.: Network Element Characteristics for Traffic Load Adaptive Network Operation. In: *13. ITG-Fachtagung Photonische Netze*. Leipzig, 07.–08. Mai 2012.

Introduction & Motivation


Dynamic aspects of load-adaptive networking

Network reconfiguration time characteristics

Measurements and results

CLASSIFICATION

5

······ Alcatel · Lucent

POWER-SAVE TECHNIQUES TAXONOMY AND ACTIVATION TIMES

Approach	Subsystem			System		Network		
Rate Adaptation	Dynamic voltage and frequency scaling	CPU P-states	10-100 µs	DSL L2 mode	<1 s			
		Memory DVFS	<100 µs	Ethernet RPS	20 ms			
Sleeping	CPU C-states (C1, C2)		10-100 ns	DSL L3 mode	<3 s			
	CPU C-states (C3)		50 µs	PON dozing	1 µs			
	DRAM power-down		<10 ns	PON fast sleeping	<200 µs			
	DRAM self refresh		<1 µs	PON deep sleeping	-			
	CMOS clock gating		10 ns	EEE low-power idle	1-25 ms			
	CMOS clock and power gating		5 µs					
	FPGA suspend techniques		<100 µs					
Energy- aware data/traffic control	CPU idle core "hotplug"		5 ms	Ethernet background traffic buffering	5-20 µs	Energy- aware routing	Interface shutdown	>10 s
	Power-aware virtual memory		<1 µs				Line card shutdown	> 30 s
							Chassis shutdown	minutes
							Protocol conver- gence	n/a

Introduction & Motivation

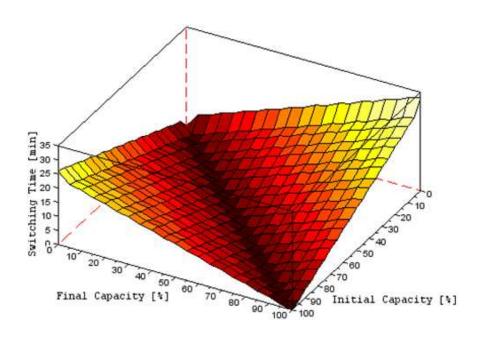
Dynamic aspects of load-adaptive networking

Network reconfiguration time characteristics

Measurements and results

RECONFIGURATION TIME SERIAL SWITCHING OF COMPONENTS

Analytical formulation


Activation times (switching on)

$$T_{_{\rm NE\,ON}}^{\rm S}(C_{\rm in},C_{\rm fi}) = T_{_{\rm C_{ON}}} + \sum_{i=1}^{n_{_{\rm LC_{ON}}}} T_{_{\rm LC_{ON}i}} + \sum_{j=1}^{n_{_{\rm PG_{ON}}}} T_{_{\rm PG_{ON}j}} + \sum_{l=1}^{n_{_{\rm PON}}} T_{_{\rm PON}j}$$

De-activation times (switching off)

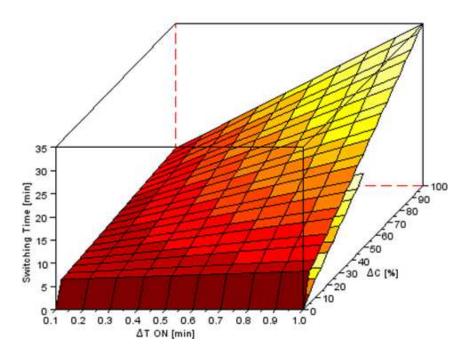
$$T_{_{\text{NE OFF}}}^{\text{S}}(C_{\text{in}}, C_{\text{fi}}) = T_{C_{\text{OFF}}} + \sum_{i=1}^{n_{\text{LC}_{\text{OFF}}}} T_{\text{LC}_{\text{OFF}i}} + \sum_{j=1}^{n_{\text{PG}_{\text{OFF}j}}} T_{\text{PG}_{\text{OFF}j}} + \sum_{l=1}^{n_{\text{POFF}j}} T_{P_{\text{OFF}j}}$$

Exemplary result

The capacity differences determine the switching times.

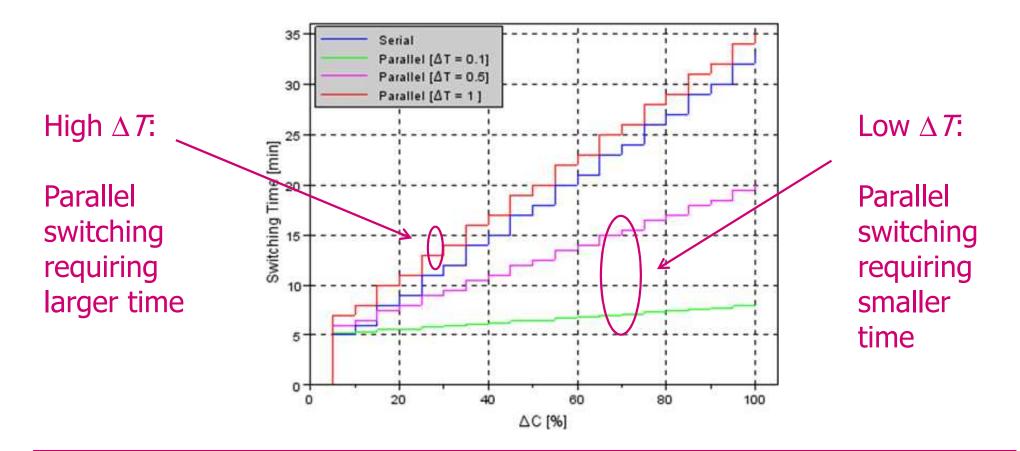
RECONFIGURATION TIME PARALLEL SWITCHING OF COMPONENTS

Analytical formulation


Activation times (switching on)

 $T_{_{\text{NEON}}}^{P}(C_{_{\text{in}}}, C_{_{\text{fi}}}) = T_{_{\text{C}_{\text{ON}}}} + T_{_{\text{LC}_{\text{ON}}}} + T_{_{\text{PG}_{\text{ON}}}} + T_{_{\text{P}_{\text{ON}}}} + \dots$ Parameter accounts
for additional organization effort

De-activation times (switching off)


$$T_{\text{NEOFF}}^{P}(C_{\text{in}}, C_{\text{fi}}) = T_{C_{\text{OFF}}} + T_{\text{LC}_{\text{OFF}}} + T_{\text{PG}_{\text{OFF}}} + T_{P_{\text{OFF}}} + \dots$$
$$\dots + \Delta T_{\text{OFF}}(n_{\text{LC}} + n_{\text{PG}} + n_{\text{P}})$$

Exemplary result

Capacity differences and ΔT determine the switching times.

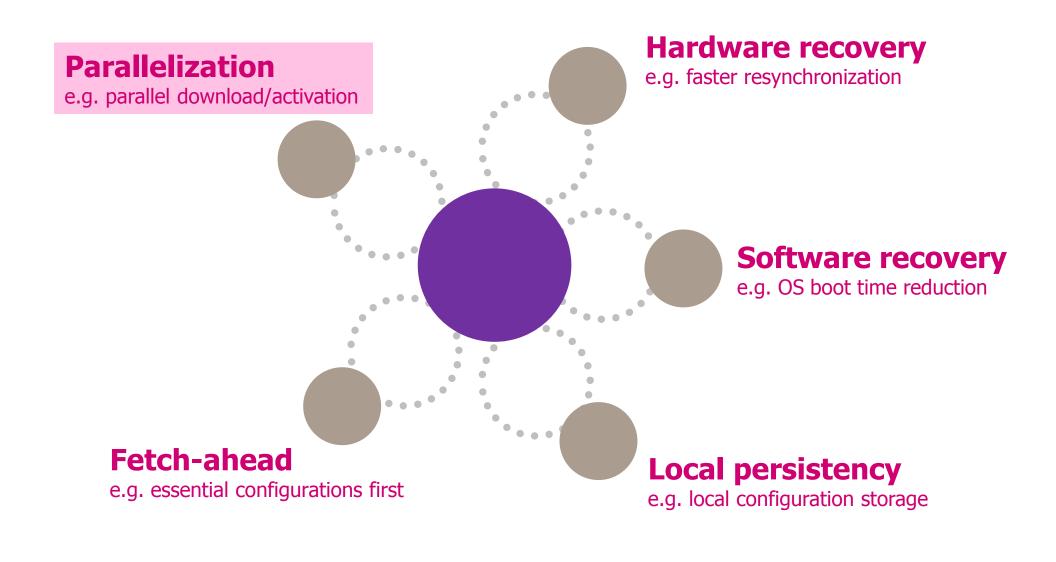
RECONFIGURATION TIME COMPARISON OF SWITCHING STRATEGIES

Additional processing organization time ΔT is critical.

•• Alcatel • Lucent 🥢

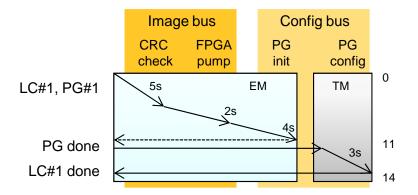
OUTLINE

Introduction & Motivation


Dynamic aspects of load-adaptive networking

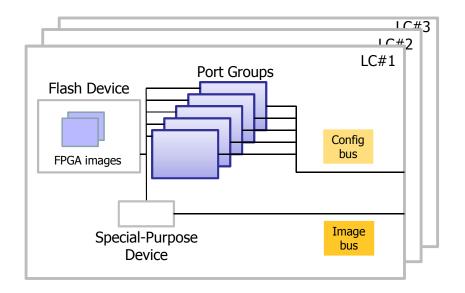
Network reconfiguration time characteristics

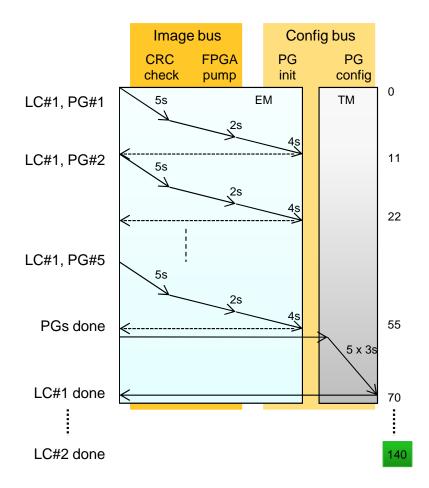

Measurements and results



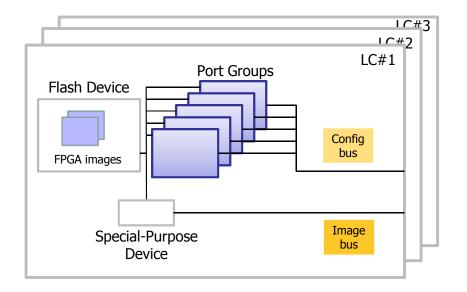
IMPROVING ACTIVATION TIMES DESIGN PRINCIPLES

IMPROVING ACTIVATION TIMES EXAMPLE: LINE CARD ACTIVATION (1)

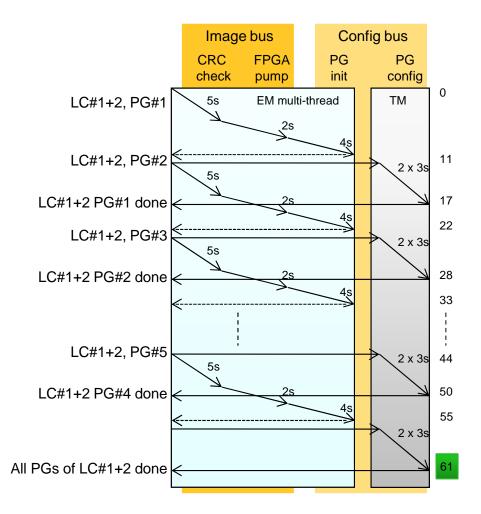



- Line card (LC) with several port groups (PG)
- Two hardware busses (image bus, config bus)
- Two software processes
 - Equipment management (EM)
 - Transmission management (TM)

IMPROVING ACTIVATION TIMES EXAMPLE: LINE CARD ACTIVATION (2)

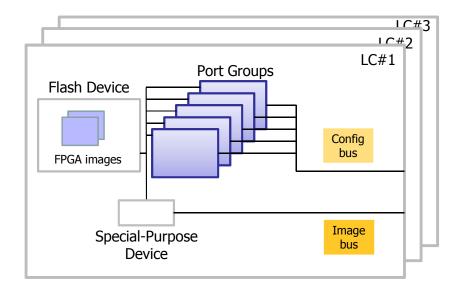


- Line card (LC) with several port groups (PG)
- Two hardware busses (image bus, config bus)
- Two software processes
 - Equipment management (EM)
 - Transmission management (TM)

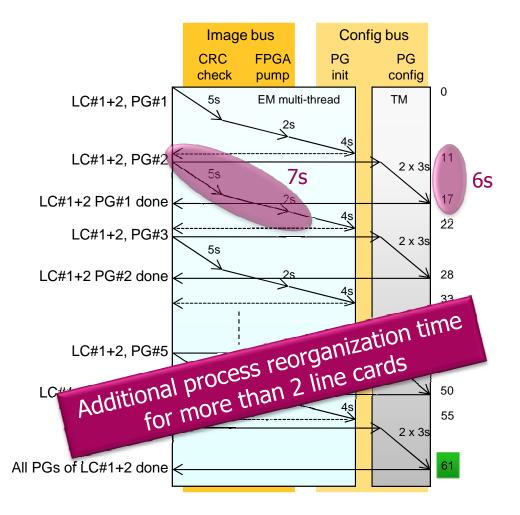


······ Alcatel Lucent

IMPROVING ACTIVATION TIMES EXAMPLE: LINE CARD ACTIVATION (3)



- Line card (LC) with several port groups (PG)
- Two hardware busses (image bus, config bus)
- Two software processes
 - Equipment management (EM)
 - Transmission management (TM)



······ Alcatel·Lucent 🥢

IMPROVING ACTIVATION TIMES EXAMPLE: LINE CARD ACTIVATION (4)

- Line card (LC) with several port groups (PG)
- Two hardware busses (image bus, config bus)
- Two software processes
 - Equipment management (EM)
 - Transmission management (TM)

······ Alcatel Lucent 🥢

OUTLINE

Introduction & Motivation

Dynamic aspects of load-adaptive networking

Network reconfiguration time characteristics

Measurements and results

CONCLUSION

Taxonomy	 Categorization of power management techniques according to their temporal properties Network-level technologies most critical with respect to network performance degradation → Coordination required, e.g. by an energy-aware control plane 			
Model	 Modeling of network resource activation processes → Extension of the network element power-vs-capacity model Evaluation of serial and parallel switching strategies 			
Optimization	 Analysis of a current-generation OTN network element Serial line card activation process optimized (from 140 sec to 61 sec for two line cards) Challenges observed when software process split does not match hardware partitioning 			

. .

1

